c0d3 :: j0rg3

A collection of tips, tricks and snips. A proud Blosxom weblog. All code. No cruft.

Sun, 19 Feb 2017

Privacy: perspective and primer.

Hello friends.

While the overall telos of this blog is to, generally speaking, convey code snippets and inspire the personal projects of others, today we’re going to do something a smidgeon different.

This will be a layman’s look at varied dimensions of information security from a comfortable distance. Over the years, I’ve secured servers, operating systems, medical data, networks, communications and I’ve unsecured many of these same things. The topics are too sprawling to be covered in a quick summary — but let’s find a point of entry.

Those of us who are passionate about information security are well aware of how daunting is the situation. For newcomers, it sometimes seems rather impossible. Pick any subject and there are probably well-informed and convincing experts in diametric equidistance from any “happy medium”.

Let’s imagine that (like most of us) you don’t have anything spectacular to protect. However, you dislike the idea of our ever-dissolving privacy. Therefore you want to encrypt communications. Maybe you begin to use Signal. However, there are criticisms that there is a “backdoor” (there is not). Further, there are accusations that open source projects are coded by those who can’t get real jobs. Conversely, open source projects are widely open for peer review. If it worries one enough they are free to review code themselves.

PGP can encrypt content but concerns surround algorithmic selections. Some are worried about metadata crumbs. Of course, there’s nothing preventing the frequent switching of keys and email addresses. You could use BitMessage, any number of chat solutions or drop at paste bins.

Let’s leave those concerns aside for when you’ve figured out what you’re intending to protect. These arguments surround any subject in information security and we’re not going to investigate them on a case by case basis. Least, not in this post.

At the coarsest granularity, the question is analogous to the practicality of locking your doors or sealing your post envelopes. Should I take measures toward privacy?

My opinion is rather predictable: of course you should!

There’s a very pragmatic explanation. If there ever comes a day when you should like to communicate privately, that’s a terrible time to start learning.

Take the easy road and start using some of the myriad tools and services available.

Should you decide to take InfoSec seriously, you’ll need to define a threat model.
That is: What am I protecting? From whom am I protecting? (e.g. what are probable attack vectors?)

That’s where you need to make choices about trusting products, protocols, methods, algorithms, companies, servers, et cet. Those are all exciting subjects to explore but all too often brushing up against them can be exasperating and cause premature burn-out.

That in mind, let’s employ the philosophy that any effort toward security is better than none and take a look at a few points where one might get wetted-toes.

If you have questions or want specific advice, there are several ways below to initiate a secure conversation with me.

 

Secure your browser:

  • Privacy Badger: Block tracking
  • HTTPS Everywhere: Increase your encryptioning
  • uBlock: Advertisements are for others
  •  

    Secure communications:

  • Mailvelope: PGP email encryption for your major webmail provider (e.g., Gmail) | contact | pubkey
  • Tutanota: Encrypted webmail | Kontakt
  • Protonmail: Well-established provider of PGP encrypted webmail, featuring 2FA | kontakta
  • BitMessage: P2P encrypted communications protocol | contact: BM-2D9tDkYEJSTnEkGDKf7xYA5rUj2ihETxVR | Bitmessage channel list
  •   [ Bitmessage in a Docker container ]

  • BitMessage.ch: BitMessage email gateway | contact
  • BitMsg.me: Online BitMessage service
  • Keybase.io: Keybase maps your identity to your public keys, and vice versa
  • Signal: PGP encrypted TXT messages
  • Wire: Encrypted chat, video and calls
  • RIOT: Open-source, IRC-based, Matrix; run your own server
  • Wickr: Encrypted ephemeral chat
  •   [ n.b. Wickr’s .deb package seeks a unicode library (libicu52) which is not available to a recent Kali (or anything) install; .deb file is based on Ubuntu’s 2014 LTS release. Wickr in a Docker container ]

     

    Explore alternate nets (e.g., Deep Web, Dark Net):

  • MaidSafe: Promising new alt-web project
  • Qubes: a reasonably secure operating system
  • FreeNet: Alt-net based primarily on already knowing with whom you intend to collaborate
  • Bitmask: VPN solution to anonymize your traffic
  • TAILS: A live operating system based on the Tor network
  • TorBrowser: Stand-alone browser for Tor (less secure than TAILS)
  • Whonix: the most secure (and complex) way to access the Tor network
  • i2p: an other approach to creating a secure and private alternate web
  • Morph.is: fun alt-net, aimed at producing The World Brain. Although, it’s future looks a lot less promising since the lead dev was killed.
  • ZeroNet: one more encrypted anonymous net
  • Have fun and compute safely!


    Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
    Permalink: 20170219.privacy.prespective.primer

    Sun, 13 Jul 2014

    Simple Protection with iptables, ipset and Blacklists

    Seems I’ve always just a few more things going on than I can comfortably handle. One of those is an innocent little server holding the beginnings of a new project.

    If you expose a server to the Internet, very quickly your ports are getting scanned and tested. If you’ve an SSH server, there are going to be attempts to login as ‘root’ which is why it is ubiquitously advised that you disable root login. Also why many advise against allowing passwords at all.

    We could talk for days about improvements; it’s usually not difficult to introduce some form of two-factor authentication (2FA) for sensitive points of entry such as SSH. You can install monitoring software like Logwatch which can summarize important points from your logs, such as: who has logged via SSH, how many times root was used, etc.

    DenyHosts and Fail2ban are very great ways to secure things, according to your needs.

    DenyHosts works primarily with SSH and asks very little from you in way of configuration, especially if you’re using a package manager to install a version that is configured for the distribution on which you’re working. If you’re installing from source you may need to find where are your SSH logs (e.g., /var/log/secure, /var/log/auth.log). It’s extremely easy to set up DenyHosts to synchronize so that you’re automatically blocking widely-known offenders whether or not they’re after your server.

    In contrast, Fail2ban is going to take more work to get set up. However, it is extremely configurable and works with any log file you point it toward which means that it can watch anything (e.g., FTP, web traffic, mail traffic). You define your own jails which means you can ban problematic IP addresses according to preference. Ban bad HTTP attempts from HTTP only or stick their noses in the virtual corner and don’t accept any traffic from them until they’ve served their time-out by completely disallowing their traffic. You can even use Fail2ban to scan its own logs, so repeating offenders can be locked out for longer.

    Today we’re going to assume that you’ve a new server that shouldn’t be seeing any traffic except from you and any others involved in the project. In that case, you probably want to block traffic pretty aggressively. If you’ve physical access to the server (or the ability to work with staff at the datacenter) then it’s better to err in the direction of accidentally blocking good guys than trying to be overly fault-tolerant.

    The server we’re working on today is a Debian Wheezy system. It has become a common misconception that Ubuntu and Debian are, intents and purposes, interchangeable. They’re similar in many respects and Ubuntu is great preparation for using Debian but they are not the same. The differences, I think, won’t matter for this exercise but I am unsure because this was written using Wheezy.

    Several minutes after bringing my new server online, I started seeing noise in the logs. I was still getting set up and really didn’t want to stop and take protective measures but there’s no point in securing a server after its been compromised. The default Fail2ban configuration was too forgiving for my use. It was scanning for 10 minutes and banning for 10 minutes. Since only a few people should be accessing this server, there’s no reason for anyone to be trying a different password every 15 minutes (for hours).

    I found a ‘close-enough’ script and modified it. Here, we’ll deal with a simplified version.

    First, lets create a name for these ne’er-do-wells in iptables:
    iptables -N bad_traffic

    For this one, we’ll use Perl. We’ll look at our Apache log files to find people sniffing ‘round and we’ll block their traffic. Specifically, we’re going to check Apache’s ‘error.log’ for the phrases ‘File does not exist’ and ‘client denied by server configuration’ and block people causing those errors. This would be excessive for servers intended to serve the general populace. For a personal project, it works just fine as a ‘DO NOT DISTURB’ sign.


    #!/usr/bin/env perl
    use strict;
    use POSIX qw(strftime);

    my $log = ($ARGV[0] ? $ARGV[0] : "/var/log/apache2/error.log");
    my $chain = ($ARGV[1] ? $ARGV[1] : "bad_traffic");

    my @bad = `grep -iE 'File does not exist|client denied by server configuration' $log |cut -f8 -d" " | sed 's/]//' | sort -u`;
    my @ablk = `/sbin/iptables -S $chain|grep DROP|awk '{print $4}'|cut -d"/" -f1`;

    foreach my $ip (@bad) {
    if (!grep $_ eq $ip, @ablk) {
    chomp $ip;
    `/sbin/iptables -A $chain -s $ip -j DROP`;
    print strftime("%b %d %T",localtime(time))." badht: blocked bad HTTP traffic from: $ip\n";
    }
    }

    That gives us some great, utterly unforgiving, blockage. Looking at the IP addresses attempting to pry, I noticed that most of them were on at least one of the popular block-lists.

    So let’s make use of some of those block-lists! I found a program intended to apply those lists locally but, of course, it didn’t work for me. Here’s a similar program; this one will use ipset for managing the block-list though only minor changes would be needed to use iptables as above:

    #!/bin/bash
    IP_TMP=ip.tmp
    IP_BLACKLIST_TMP=ip-blacklist.tmp

    IP_BLACKLIST=ip-blacklist.conf

    WIZ_LISTS="chinese nigerian russian lacnic exploited-servers"

    BLACKLISTS=(
    "http://danger.rulez.sk/projects/bruteforceblocker/blist.php" # BruteForceBlocker IP List
    "http://rules.emergingthreats.net/blockrules/compromised-ips.txt" # Emerging Threats - Compromised IPs
    "http://www.spamhaus.org/drop/drop.txt" # Spamhaus Don't Route Or Peer List (DROP)
    "http://www.spamhaus.org/drop/edrop.txt" # Spamhaus Don't Route Or Peer List (DROP) Extended
    "http://cinsscore.com/list/ci-badguys.txt" # C.I. Army Malicious IP List
    "http://www.openbl.org/lists/base.txt" # OpenBL.org 90 day List
    "http://www.autoshun.org/files/shunlist.csv" # Autoshun Shun List
    "http://lists.blocklist.de/lists/all.txt" # blocklist.de attackers
    )

    for address in "${BLACKLISTS[@]}"
    do
    echo -e "\nFetching $address\n"
    curl "$address" >> $IP_TMP
    done

    for list in $WIZ_LISTS
    do
    wget "http://www.wizcrafts.net/$list-iptables-blocklist.html" -O - >> $IP_TMP
    done

    wget 'http://wget-mirrors.uceprotect.net/rbldnsd-all/dnsbl-3.uceprotect.net.gz' -O - | gunzip | tee -a $IP_TMP

    grep -o '^[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}[/][0-9]\{1,3\}' $IP_TMP | tee -a $IP_BLACKLIST_TMP
    grep -o '^[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}[^/]' $IP_TMP | tee -a $IP_BLACKLIST_TMP

    sed -i 's/\t//g' $IP_BLACKLIST_TMP
    sort -u $IP_BLACKLIST_TMP | tee $IP_BLACKLIST

    rm $IP_TMP
    rm $IP_BLACKLIST_TMP

    wc -l $IP_BLACKLIST

    if hash ipset 2>/dev/null
    then
    ipset flush bloxlist
    while IFS= read -r ip
    do
    ipset add bloxlist $ip
    done < $IP_BLACKLIST
    else
    echo -e '\nipset not found\n'
    echo -e "\nYour bloxlist file is: $IP_BLACKLIST\n"
    fi


    Download here:
        bad_traffic.pl
        bloxlist.sh


    Tags: , , , , , , , , , ,
    Permalink: 20140713.simple.protection.with.iptables.ipset.and.blacklilsts