c0d3 :: j0rg3

A collection of tips, tricks and snips. A proud Blosxom weblog. All code. No cruft.

Tue, 10 Jan 2017

[-] Auxiliary failed: Msf::OptionValidateError The following options failed to validate: RHOSTS.

Mucking about with a fresh copy of Kali brings to attention that it’s packaged with an Armitage that doesn’t correctly work.

I know what you’re thinking… Good. Type the commands into Msfconsole like a real man, y’uh lazy good-fer-naught! And, in practice, that was my immediate solution. But I can’t resist a good tinker when things are misbehaving.

I was anticipating that the problem would be thoroughly solved when I ixquicked it. That was partially correct. Surprised, however, when apt-get update && apt-get upgrade didn’t fix the issue. More surprised at the age of the issue. Most surprised that I could see lots of evidence that users have been plagued by this issue — but no clear work arounds were quickly found.

Guess what we’re doing today?

Okay. The issue is quite minor but just enough to be heartbreaking to the fledgling pentester trying to get a VM off the ground.

In brief, the owner of Armitage’s Github explains:

The MSF Scans feature in Armitage parses output from Metasploit’s portscan/tcp module and uses these results to build a list of targets it should run various Metasploit auxiliary modules against. A recent-ish update to the Metasploit Framework changed the format of the portscan/tcp module output. A patch to fix this issue just needs to account for the new format of the portscan/tcp module.

That is, a colon makes it into the input for the Msfconsole command to define RHOSTS. I.e.: set RHOSTS 172.16.223.150: - 172.16.223.150

An other kind coder tweaked the regex and submitted the patch and pull request, which was successfully incorporated into the project.

Sadly, things have stalled out there. So if this problem is crippling your rig, let’s fix it!

We just want a fresh copy of the project.
root@kali:~/armitage# git clone https://github.com/rsmudge/armitage

Cloning into ‘armitage’…
remote: Counting objects: 7564, done.
remote: Total 7564 (delta 0), reused 0 (delta 0), pack-reused 7564
Receiving objects: 100% (7564/7564), 47.12 MiB | 2.91 MiB/s, done.
Resolving deltas: 100% (5608/5608), done.

Kali is Debian-based and we’re going to need Apache Ant:
root@kali:~/armitage# apt-get install ant

Then, we’ll build our new fella:
root@kali:~/armitage# cd armitage
root@kali:~/armitage# ./package.sh

Buildfile: /root/test/armitage/build.xml

clean:

BUILD SUCCESSFUL
Total time: 0 seconds
Buildfile: /root/test/armitage/build.xml

init:
[mkdir] Created dir: /root/test/armitage/bin

compile:
[javac] Compiling 111 source files to /root/test/armitage/bin
[javac] depend attribute is not supported by the modern compiler
[javac] Note: /root/test/armitage/src/ui/MultiFrame.java uses or overrides a deprecated API.
[javac] Note: Recompile with -Xlint:deprecation for details.
[javac] Note: Some input files use unchecked or unsafe operations.
[javac] Note: Recompile with -Xlint:unchecked for details.

BUILD SUCCESSFUL
Total time: 2 seconds
Buildfile: /root/test/armitage/build.xml

init:

compile:

jar:
[unzip] Expanding: /root/test/armitage/lib/sleep.jar into /root/test/armitage/bin
[unzip] Expanding: /root/test/armitage/lib/jgraphx.jar into /root/test/armitage/bin
[unzip] Expanding: /root/test/armitage/lib/msgpack-0.6.12-devel.jar into /root/test/armitage/bin
[unzip] Expanding: /root/test/armitage/lib/postgresql-9.1-901.jdbc4.jar into /root/test/armitage/bin
[unzip] Expanding: /root/test/armitage/lib/javassist-3.15.0-GA.jar into /root/test/armitage/bin
[copy] Copying 4 files to /root/test/armitage/bin/scripts-cortana
[jar] Building jar: /root/test/armitage/armitage.jar
[jar] Building jar: /root/test/armitage/cortana.jar

BUILD SUCCESSFUL
Total time: 1 second
armitage/
armitage/readme.txt
armitage/teamserver
armitage/cortana.jar
armitage/armitage.jar
armitage/armitage-logo.png
armitage/armitage
armitage/whatsnew.txt
adding: readme.txt (deflated 55%)
adding: armitage.exe (deflated 49%)
adding: cortana.jar (deflated 5%)
adding: armitage.jar (deflated 5%)
adding: whatsnew.txt (deflated 65%)
armitage/
armitage/readme.txt
armitage/teamserver
armitage/cortana.jar
armitage/armitage.jar
armitage/armitage-logo.png
armitage/armitage
armitage/whatsnew.txt
Archive: ../../armitage.zip
inflating: readme.txt
inflating: armitage.exe
inflating: cortana.jar
inflating: armitage.jar
inflating: whatsnew.txt

And here, best I can guess from messages read, is where a lot of people are running into trouble. We have successfully produced our new working copy of armitage. However, it is in our own local directory and will not be run if we just enter the command: armitage

Let’s review how to figure out what we want to do about that.

First, we want to verify what happens when we run the command armitage.
root@kali:~/armitage# which armitage

/usr/bin/armitage

Good! Let’s check and see what that does!
root@kali:~/armitage# head /usr/bin/armitage

#!/bin/sh

cd /usr/share/armitage/
exec ./armitage “$@”

Almost there! It’s running /usr/share/armitage/armitage with whatever variables we’ve passed in. We’ll check that out.
root@kali:~/armitage# head /usr/share/armitage/armitage

#!/bin/sh
java -XX:+AggressiveHeap -XX:+UseParallelGC -jar armitage.jar $@

We have enough information to assemble a solution.

I trust that the people behind Kali and Armitage will get this corrected so I don’t want to suggest a solution that would replace the armitage command and prevent an updated version from running later. So, let’s just make a temporary replacement?

root@kali:~/armitage# echo -e '#!/bin/sh\njava -XX:+AggressiveHeap -XX:+UseParallelGC -jar ~/armitage/armitage.jar $@' > /usr/bin/tmparmitage

Hereafter, we can use the command ‘tmparmitage’ (either CLI or ALT-F2) to run our fresh version until things catch up.

And, of course, to save you the time, weary hacker:

Download here:
    armitage_quick_fix.sh


Tags: , , , , , , ,
Permalink: 20170110.armitage.not.working.in.kali

Mon, 02 Jan 2017

Securing a new server

Happy new year! New year means new servers, right?

That provides its own set of interesting circumstances!

The server we’re investigating in this scenario was chosen for being a dedicated box in a country that has quite tight privacy laws. And it was a great deal offered on LEB.

So herein is the fascinating bit. The rig took a few days for the provider to set up and, upon completion, the password for SSHing into the root account was emailed out. (o_0)

In very security-minded considerations, that means that there was a window of opportunity for bad guys to work on guessing the password before its owner even tuned in. That window remains open until the server is better secured. Luckily, there was a nice interface for reinstalling the OS permitting its purchaser to select a password.

My preferred approach was to script the basic lock-down so that we can reinstall the base OS and immediately start closing gaps.


In order:

  • Set up SSH keys (scripted)
  • Disable password usage for root (scripted)
  • Install and configure IPset (scripted. details in next post)
  • Install and configure fail2ban
  • Install and configure PortSentry

  • In this post, we’re focused on the first two steps.


    The tasks to be handled are:

  • Generate keys
  • Configure local SSH to use key
  • Transmit key to target server
  • Disable usage of password for ‘root’ account

  • We’ll use ssh-keygen to generate a key — and stick with RSA for ease. If you’d prefer ECC then you’re probably reading the wrong blog but feel encouraged to contact me privately.

    The code:

    #!/bin/bash
    #configure variables
    remote_host="myserver.com"
    remote_user="j0rg3"
    remote_pass="thisisaratheraquitecomplicatedpasswordbatterystaple" # https://xkcd.com/936/
    local_user=`whoami`
    local_host=`hostname`
    local_date=`date -I`
    local_filename=~/.ssh/id_rsa@$remote_host

    #generate key without passphrase
    ssh-keygen -b 4096 -P "" -C $local_user@local_host-$local_date -f $local_filename

    #add reference to generated key to local configuration
    printf '%s\n' "Host $remote_host" "IdentityFile $local_filename" >> ~/.ssh/config

    #copy key to remote host
    sshpass -p $remote_pass ssh-copy-id $remote_user@$remote_host

    #disable password for root on remote
    ssh $remote_user@$remote_host "cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak && sed -i '0,/RE/s/PermitRootLogin yes/PermitRootLogin no/' /etc/ssh/sshd_config"

    We just run this script soon as the OS is reinstalled and we’re substantially safer. As a Deb8 install, quickly pulling down fail2ban and PortSentry makes things quite a lot tighter.

    In another post, we’ll visit the 2017 version of making a DIY script to batten the hatches using a variety of publicly provided blocklists.

    Download here:
        ssh_quick_fix.sh


    Tags: , , , ,
    Permalink: 20170102.securing.a.new.server

    Tue, 20 Dec 2016

    Kicking the Crypto-tires

    Some time ago I had begun work on my own Pastebin-type project with a few goals. Basically, I wanted to eat all the cakes — and have them too.

  • Both an online user interface and efficient CLI usage
  • Messages encrypted immediately such that database access does not provide one with the contents of the messages
  • Messages capable of self-destructing
  • Database schema that would allow rebuilding the user/message relationship, provided the same password but would not store those relationships
  • Also, JavaScript encryption to appeal to users who don’t know much about cryptography but would like to try
  • The project, honestly, was going swimmingly when derailed by the goings-on of life.

    One of the interesting components of the project was, of course, choosing crypto implementations. There are know shortcomings to handling it in JS but that’s still the most convenient for some users. Outside of the browser, server-side, you had all the same questions about which solution was best. Which protocol(s) should be available?

    Well, I’ve just learned about a project which I would have loved to have available back then. Project Wycheproof can help you test your crypto solutions against known problems and attacks. Featuring 80 tests probing at 40 known bugs, here’s a snip from the introduction:

    Project Wycheproof has tests for the most popular crypto algorithms, including

  • AES-EAXAES-GCM
  • AES-GCM
  • DH
  • DHIES
  • DSA
  • ECDH
  • ECDSA
  • ECIES
  • RSA
  • The tests detect whether a library is vulnerable to many attacks, including

  • Invalid curve attacks
  • Biased nonces in digital signature schemes
  • Of course, all Bleichenbacher’s attacks
  • And many more — we have over 80 test cases
  • Interesting stuff with exciting potential!


    Tags: , ,
    Permalink: 20161220.kicking.the.crypto.tires