c0d3 :: j0rg3

A collection of tips, tricks and snips. A proud Blosxom weblog. All code. No cruft.

Sat, 04 Mar 2017

Official(ish) deep dark onion code::j0rg3 mirror

Recently I decided that I wanted my blog to be available inside of the Deep, Dark Onion (Tor).

First time around, I set up a proxy that I modified to access only the clear web version of the blog and to avail that inside Tor as a ‘hidden service’.

My blog is hosted on equipment provided by the kind folk at insomnia247.nl and I found that, within a week or so, the address of my proxy was blocked. It’s safe for us to assume that it was simply because of the outrageous popularity it received inside Tor.

By “safe for us to assume” I mean that it is highly probable that no significant harm would come from making that assumption. It would not be a correct assumption, though.

What’s more true is that within Tor things are pretty durn anonymous. Your logs will show Tor traffic coming from 127.0.0.1 only. This is a great situation for parties that would like to scan sites repeatedly looking for vulnerabilities — because you can’t block them. They can scan your site over and over and over. And the more features you have (e.g., comments, searches, any form of user input), the more attack vectors are plausible.

So why not scan endlessly? They do. Every minute of every hour.

Since insomnia247 is a provider of free shells, it is incredibly reasonable that they don’t want to take the hit for that volume of traffic. They’re providing this service to untold numbers of other users, blogs and projects.

For that reason, I decided to set up a dedicated mirror.

Works like this: my blog lives here. I have a machine at home which uses rsync to make a local copy of this blog. Immediately thereafter it rsyncs any newly gotten data up to the mirror in onionland.

After consideration, I realized that this was also a better choice just in case there is something exploitable in my blog. Instead of even risking the possibility that an attacker could get access to insomnia247, they can only get to my completely disposable VPS which has hardly anything on it except this blog and a few scripts to which I’ve already opened the source code.

I’ve not finished combing through but I’ve taken efforts to ensure it doesn’t link back to clear web. To be clear, there’s nothing inherently wrong with that. Tor users will only appear as the IP address of their exit node and should still remain anonymous. To me, it’s just onion etiquette. You let the end-user decide when they want to step outside.

To that end, the Tor mirror does not have the buttons to share to Facebook, Twitter, LinkedIn, Google Plus.

That being said, if you’re a lurker of those Internet back-alleys then you can find the mirror at: http://aacnshdurq6ihmcs.onion

Happy hacking, friends!


Tags: , , , , , , , , , , ,
Permalink: 20170304.deep.dark.onion

Sun, 19 Feb 2017

Privacy: perspective and primer.

Hello friends.

While the overall telos of this blog is to, generally speaking, convey code snippets and inspire the personal projects of others, today we’re going to do something a smidgeon different.

This will be a layman’s look at varied dimensions of information security from a comfortable distance. Over the years, I’ve secured servers, operating systems, medical data, networks, communications and I’ve unsecured many of these same things. The topics are too sprawling to be covered in a quick summary — but let’s find a point of entry.

Those of us who are passionate about information security are well aware of how daunting is the situation. For newcomers, it sometimes seems rather impossible. Pick any subject and there are probably well-informed and convincing experts in diametric equidistance from any “happy medium”.

Let’s imagine that (like most of us) you don’t have anything spectacular to protect. However, you dislike the idea of our ever-dissolving privacy. Therefore you want to encrypt communications. Maybe you begin to use Signal. However, there are criticisms that there is a “backdoor” (there is not). Further, there are accusations that open source projects are coded by those who can’t get real jobs. Conversely, open source projects are widely open for peer review. If it worries one enough they are free to review code themselves.

PGP can encrypt content but concerns surround algorithmic selections. Some are worried about metadata crumbs. Of course, there’s nothing preventing the frequent switching of keys and email addresses. You could use BitMessage, any number of chat solutions or drop at paste bins.

Let’s leave those concerns aside for when you’ve figured out what you’re intending to protect. These arguments surround any subject in information security and we’re not going to investigate them on a case by case basis. Least, not in this post.

At the coarsest granularity, the question is analogous to the practicality of locking your doors or sealing your post envelopes. Should I take measures toward privacy?

My opinion is rather predictable: of course you should!

There’s a very pragmatic explanation. If there ever comes a day when you should like to communicate privately, that’s a terrible time to start learning.

Take the easy road and start using some of the myriad tools and services available.

Should you decide to take InfoSec seriously, you’ll need to define a threat model.
That is: What am I protecting? From whom am I protecting? (e.g. what are probable attack vectors?)

That’s where you need to make choices about trusting products, protocols, methods, algorithms, companies, servers, et cet. Those are all exciting subjects to explore but all too often brushing up against them can be exasperating and cause premature burn-out.

That in mind, let’s employ the philosophy that any effort toward security is better than none and take a look at a few points where one might get wetted-toes.

If you have questions or want specific advice, there are several ways below to initiate a secure conversation with me.

 

Secure your browser:

  • Privacy Badger: Block tracking
  • HTTPS Everywhere: Increase your encryptioning
  • uBlock: Advertisements are for others
  •  

    Secure communications:

  • Mailvelope: PGP email encryption for your major webmail provider (e.g., Gmail) | contact | pubkey
  • Tutanota: Encrypted webmail | Kontakt
  • Protonmail: Well-established provider of PGP encrypted webmail, featuring 2FA | kontakta
  • BitMessage: P2P encrypted communications protocol | contact: BM-2D9tDkYEJSTnEkGDKf7xYA5rUj2ihETxVR | Bitmessage channel list
  •   [ Bitmessage in a Docker container ]

  • BitMessage.ch: BitMessage email gateway | contact
  • BitMsg.me: Online BitMessage service
  • Keybase.io: Keybase maps your identity to your public keys, and vice versa
  • Signal: PGP encrypted TXT messages
  • Wire: Encrypted chat, video and calls
  • RIOT: Open-source, IRC-based, Matrix; run your own server
  • Wickr: Encrypted ephemeral chat
  •   [ n.b. Wickr’s .deb package seeks a unicode library (libicu52) which is not available to a recent Kali (or anything) install; .deb file is based on Ubuntu’s 2014 LTS release. Wickr in a Docker container ]

     

    Explore alternate nets (e.g., Deep Web, Dark Net):

  • MaidSafe: Promising new alt-web project
  • Qubes: a reasonably secure operating system
  • FreeNet: Alt-net based primarily on already knowing with whom you intend to collaborate
  • Bitmask: VPN solution to anonymize your traffic
  • TAILS: A live operating system based on the Tor network
  • TorBrowser: Stand-alone browser for Tor (less secure than TAILS)
  • Whonix: the most secure (and complex) way to access the Tor network
  • i2p: an other approach to creating a secure and private alternate web
  • Morph.is: fun alt-net, aimed at producing The World Brain. Although, it’s future looks a lot less promising since the lead dev was killed.
  • ZeroNet: one more encrypted anonymous net
  • Have fun and compute safely!


    Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
    Permalink: 20170219.privacy.prespective.primer

    Fri, 17 Feb 2017

    The making of a Docker: Part I - Bitmessage GUI with SSH X forwarding

    Lately, I’ve been doing a lot of work from a laptop running Kali. Engaged in pursuit of a new job, I’m brushing up on some old tools and skills, exploring some bits that have changed.

    My primary desktop rig is currently running Arch because I love the fine grain control and the aggressive releases. Over the years, I’ve Gentoo’d and Slacked, Crunchbanged, BSD’d, Solarised, et cet. And I’ve a fondness for all of them, especially the security-minded focus of OpenBSD. But, these days we’re usually on Arch or Kali. Initially, I went with Black Arch on the laptop but I felt the things and ways I was fixing things were too specific to my situation to be good material for posts.

    Anyway, I wanted to get Bitmessage running, corresponding to another post I have in drafts. On Kali, it wasn’t going well so I put it on the Arch box and just ran it over the network. A reasonable solution if you’re in my house but also the sort of solution that will keep a hacker up at night.

    If you’re lucky, there’s someone maintaining a package for the piece of software that you want to run. However, that’s often not the case.

    If I correctly recall, to “fix” the problem with Bitmessage on Kali would’ve required the manual installation an older version of libraries that were already present. Those libraries should, in fact, be all ebony and ivory, living together in harmony. However, I just didn’t love the idea of that solution. I wanted to find an approach that would be useful on a broader scale.

    Enter containerization/virtualization!

    Wanting the lightest solution, I quickly went to Docker and realized something. I have not before built a Docker container for a GUI application. And Bitmessage’s CLI/daemon mode doesn’t provide the fluid UX that I wanted. Well, the easy way to get a GUI out of a Docker container is to forward DISPLAY as an evironment variable (i.e., docker run -e DISPLAY=$DISPLAY). Splendid!

    Except that it doesn’t work on current Kali which is using QT4. There’s a when graphical apps are run as root and though it is fixed in QT5, we are using current Kali. And that means we are, by default, uid 0 and QT4.

    I saw a bunch of workarounds that seemed to have spotty (at best) rates of success including seting QT’s graphics system to Native and giving Xorg over to root. They, mostly, seemed to be cargo cult solutions.

    What made the most sense to my (generally questionable) mind was to use X forwarding. Since I had already been running Bitmessage over X forwarding from my Arch box, I knew it should work just the same.

    To be completely truthful, the first pass I took at this was with Vagrant mostly because it’s SO easy. Bring up your Vagrant Box and then:
    vagrant ssh -- -X
    Viola!

    Having proof of concept, I wanted a Docker container. The reason for this is practical. Vagrant, while completely awesome, has substantially more overhead than Docker by virtualizing the kernel. We don’t want a separate kernel running for each application. Therefore Docker is the better choice for this project.

    Also, we want this whole thing to be seemless. We want to run the command bitmessage and it should fire up with minimal awkwardness and hopefully no extra steps. That is we do not want to run the Docker container then SSH into it and execute Bitmessage as individual steps. Even though that’s going to be how we begin.

    The Bitmessage wiki accurately describes how to install the software so we’ll focus on the SSH setup. Though when we build the Dockerfile we will need to add SSH to the list from the wiki.

    We’re going to want the container to start so that the SSH daemon is ready. Until then we can’t SSH (with X forwarding) into the container. Then we’ll want to use SSH to kick off the Bitmessage application, drawing the graphical interface using our host system’s X11.

    We’re going to take advantage of Docker’s -v --volume option which allows us to specify a directory on our host system to be mounted inside our container. Using this feature, we’ll generate our SSH keys on the host and make them automatically available inside the container. We’ll tuck the keys inside the directory that Bitmessage uses for storing its configuration and data. That way Bitmessage’s configuration and stored messages can be persistent between runs — and all of your pieces are kept in a single place.

    When we generate the container /etc/ssh/sshd_config is configured to allow root login without password only (i.e., using keys). So here’s how we’ll get this done:
    mkdir -p ~/.config/PyBitmessage/keys #Ensure that our data directories exist
    cd ~/.config/PyBitmessage/keys
    ssh-keygen -b 4096 -P "" -C $"$(whoami)@$(hostname)-$(date -I)" -f docker-bitmessage-keys #Generate our SSH keys
    ln -fs docker-bitmessage-keys.pub authorized_keys #for container to see pubkey

    Build our container (sources available at Github and Docker) and we’ll make the script to handle Bitmessage to our preferences. #!/bin/bash
    # filename: bitmessage
    set -euxo pipefail

    # open Docker container:
    # port 8444 available, sharing local directories for SSH and Bitmessage data
    # detatched, interactive, pseudo-tty (-dit)
    # record container ID in $DID (Docker ID)
    DID=$(docker run -p 8444:8444 -v ~/.config/PyBitmessage/:/root/.config/PyBitmessage -v ~/.config/PyBitmessage/keys/:/root/.ssh/ -dit j0rg3/bitmessage-gui bash)

    # find IP address of new container, record in $DIP (Docker IP)
    DIP=$(docker inspect $DID | grep IPAddress | cut -d '"' -f 4)

    # pause for one second to allow container's SSHD to come online
    sleep 1

    # SSH into container and execute Bitmessage
    ssh -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null -oIdentityFile=~/.config/PyBitmessage/keys/docker-bitmessage-keys -X $DIP ./PyBitmessage/src/bitmessagemain.py

    # close container if Bitmessage is closed
    docker kill $DID

    Okay, let’s make it executable: chmod +x bitmessage

    Put a link to it where it can be picked up system-wide: ln -fs ~/docker-bitmessage/bitmessage /usr/local/bin/bitmessage

    There we have it! We now have a functional Bitmessage inside a Docker container. \o/

    In a future post we’ll look at using eCryptfs to further protect our Bitmessage data stores.

      Project files: Github and Docker


    Tags: , , , , , , , , , , ,
    Permalink: 20170217.making.a.docker.bitmessage

    Sat, 25 Jan 2014

    Network-aware Synergy client

    My primary machines are *nix or BSD variants, though I certainly have some Windows-based rigs also. Today we’re going to share some love with Windows 7 and PowerShell.

    One of my favorite utilities is Synergy. If you’re not already familiar it allows to you seamlessly move from the desktop of one computer to another with the same keyboard and mouse. It even supports the clipboard so you might copy text from a GNU/Linux box and paste it in a Windows’ window. Possibly, they have finished adding drag and drop to the newer versions. I am not sure because I run a relatively old version that is supported by all of the machines that I use regularly.

    What’s the problem, then? The problem was that I was starting my Synergy client by hand. Even more disturbing, I was manually typing the IP address at work and at home, twice or more per weekday. This behavior became automated by my brain and continued for months unnoticed. But this is no kind of life for a geek such as myself, what with all this superfluous clicking and tapping!

    Today, we set things right!

    In my situation, the networks that I use happen to assign IP addresses from different subnets. If you’ve not the convenience of that situation then you might need to add something to the script. Parsing an ipconfig/ifconfig command, you could possibly use something like the Default Gateway or the Connection-specific DNS Suffix. Alternatively, you could check for the presence of some network share, a file on server or anything that would allow you to uniquely identify the surroundings.

    As I imagined it, I wanted the script to accomplish the following things

    • see if Synergy is running (possibly from the last location), if so ask if we need to kill it and restart so we can identify a new server
    • attempt to locate where we are and connect to the correct Synergy server
    • if the location is not identified, ask whether to start the Synergy client

    This is how I accomplished that task:

    # [void] simply supresses the noise made loading 'System.Reflection.Assembly'
    [void] [System.Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

    # Define Synergy server IP addresses
    $synergyServerWork = "192.168.111.11"
    $synergyServerHome = "192.168.222.22"

    # Define partial IP addresses that will indicate which server to use
    $synergyWorkSubnets = "192.168.111", "192.168.115"
    $synergyHomeSubnets = "192.168.222", "192.168.225"

    # Path to Synergy Client (synergyc)
    $synergyClientProgram = "C:\Program Files\Synergy\synergyc.exe"

    # Path to Syngery launcher, for when we cannot identify the network
    $synergyLauncherProgram = "C:\Program Files\Synergy\launcher.exe"

    # Remove path and file extension to give us the process name
    $processName = $synergyClientProgram.Substring( ($synergyClientProgram.lastindexof("\") + 1), ($synergyClientProgram.length - ($synergyClientProgram.lastindexof("\") + 5) ))

    # Grab current IP address
    $currentIPaddress = ((ipconfig | findstr [0-9].\.)[0]).Split()[-1]

    # Find the subnet of current IP address
    $location = $currentIPaddress.Substring(0,$currentIPaddress.lastindexof("."))


    function BalloonTip ($message)
    {
    # Pop-up message from System Tray
    $objNotifyIcon = New-Object System.Windows.Forms.NotifyIcon
    $objNotifyIcon.Icon = [System.Drawing.Icon]::ExtractAssociatedIcon($synergyClientProgram)
    $objNotifyIcon.BalloonTipText = $message
    $objNotifyIcon.Visible = $True
    $objNotifyIcon.ShowBalloonTip(15000)
    }


    #main

    # If Synergy client is already running, do we need to restart it?
    $running = Get-Process $processName -ErrorAction SilentlyContinue
    if ($running) {
    $answer = [System.Windows.Forms.MessageBox]::Show("Synergy is running.`nClose and start again?", "OHNOES", 4)
    if ($answer -eq "YES") {
    Stop-Process -name $processName
    }
    Else {
    exit
    }
    }

    # Do we recognize the current network?
    if ($synergyWorkSubnets -contains $location) {
    BalloonTip "IP: $($currentIPaddress)`nServer: $($synergyServerWork)`nConnecting to Synergy server at work."
    & $synergyClientProgram $synergyServerWork
    exit
    }
    ElseIf ($synergyHomeSubnets -contains $location) {
    BalloonTip "IP: $($currentIPaddress)`nServer: $($synergyServerHome)`nConnecting to Synergy server at home."
    & $synergyClientProgram $synergyServerHome
    exit
    }
    Else {
    $answer = [System.Windows.Forms.MessageBox]::Show("Network not recognized by IP address: {0}`n`nLaunch Synergy?" -f $unrecognized, "OHNOES", 4)
    if ($answer -eq "YES") {
    & $synergyLauncherProgram
    }
    }

    Then I saved the script in "C:\Program Files\SynergyStart\", created a shortcut and used the Change Icon button to make the same as Synergy’s and made the Target:
    C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -WindowStyle Hidden & 'C:\Program Files\SynergyStart\synergy.ps1'

    Lastly, I copied the shortcut into the directory of things that run when the system starts up:
    %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

    Now, Synergy connects to the needed server at home and work. If it can’t figure out where it is, it asks if it should run it at all.

    As they say, a millisecond saved is a millisecond earned.

    This post was very nearly published without a Linux equivalent. Nearly.

    Same trick for bash/zsh: #!/bin/zsh

    # Define Synergy server IP addresses
    synergyServerWork="192.168.111.11"
    synergyServerHome="192.168.222.22"

    # Define partial IP addresses that will indicate which server to use
    synergyWorkSubnets=("192.168.111" "192.168.115")
    synergyHomeSubnets=("192.168.222" "192.168.225")

    # Path to Synergy Client (synergyc)
    synergyClientProgram="/usr/bin/synergyc"

    # Path to QuickSyngery, for when we cannot identify the network
    synergyLauncherProgram="/usr/bin/quicksynergy"

    # Remove path and file extension to give us the process name
    processName=`basename $synergyClientProgram`

    # Grab current IP address, assumes '192' is in use. (e.g., 192.168.1.1)
    currentIPaddress=`ip addr show | grep 192 | awk "{print $2}" | sed 's/inet //;s/\/.*//;s/ //g'`

    # Find the subnet of current IP address
    location=`echo $currentIPaddress | cut -d '.' -f 1,2,3`

    for i in "${synergyWorkSubnets[@]}"
    do
    if [ "${i}" = "${location}" ]
    then
    break
    fi
    done

    #main

    # If Synergy client is already running, do we need to restart it?
    running=`ps ax | grep -v grep | grep $processName`
    if [ $running ]
    then
    if `zenity --question --ok-label="Yes" --cancel-label="No" --text="Synergy is running.\nClose and start again?"`
    then
    pkill $processName
    else
    exit
    fi
    fi

    # Do we recognize the current network?
    for i in "${synergyWorkSubnets[@]}"
    do
    if [ "${i}" = "${location}" ]
    then
    notify-send "IP:$currentIPaddress Server:$synergyServerWork [WORK]"
    $synergyClientProgram $synergyServerWork
    exit
    fi
    done

    for i in "${synergyHomeSubnets[@]}"
    do
    if [ "${i}" = "${location}" ]
    then
    notify-send "IP:$currentIPaddress Server:$synergyServerWork [HOME]"
    $synergyClientProgram $synergyServerHome
    exit
    fi
    done

    if `zenity --question --ok-label="Yes" --cancel-label="No" --text="Network not recognized by IP address: $currentIPaddress\nLaunch Synergy?"`
    then
    $synergyLauncherProgram
    fi

    To get it to run automatically, you might choose to call the script from /etc/init.d/rc.local.

    Download here:
      PowerShell:
        synergy.ps1
      GNU/Linux:
        synergy.sh


    Tags: , ,
    Permalink: 20140125.network_aware_synergy_client

    Tue, 04 Jun 2013

    Painless protection with Yubico’s Yubikey

    Recently, I ordered a Yubikey and, in the comments section of the order, I promised to write about the product. At the time, I assumed that there was going to be something about which to write: (at least a few) steps of setting up and configuration or a registration process. They’ve made the task of writing about it difficult, by making the process of using it so easy.

    Plug it in. The light turns solid green and you push the button when you need to enter the key. That’s the whole thing!

    Physically, the device has a hole for a keychain or it can slip easily into your wallet. It draws power from the USB port on the computer, so there’s none stored in the device, meaning it should be completely unfazed if you accidentally get it wet.

    Let’s take a look at the device.

    > lsusb | grep Yubico

    Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey

    We see that it is on Bus 5, Device 4. How about a closer look?

    > lsusb -v -s5:4

    Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey
    Couldn't open device, some information will be missing
    Device Descriptor:
      bLength                18
      bDescriptorType         1
      bcdUSB               2.00
      bDeviceClass            0 (Defined at Interface level)
      bDeviceSubClass         0 
      bDeviceProtocol         0 
      bMaxPacketSize0         8
      idVendor           0x1050 Yubico.com
      idProduct          0x0010 Yubikey
      bcdDevice            2.41
      iManufacturer           1 
      iProduct                2 
      iSerial                 0 
      bNumConfigurations      1
      Configuration Descriptor:
        bLength                 9
        bDescriptorType         2
        wTotalLength           34
        bNumInterfaces          1
        bConfigurationValue     1
        iConfiguration          0 
        bmAttributes         0x80
          (Bus Powered)
        MaxPower               30mA
        Interface Descriptor:
          bLength                 9
          bDescriptorType         4
          bInterfaceNumber        0
          bAlternateSetting       0
          bNumEndpoints           1
          bInterfaceClass         3 Human Interface Device
          bInterfaceSubClass      1 Boot Interface Subclass
          bInterfaceProtocol      1 Keyboard
          iInterface              0 
            HID Device Descriptor:
              bLength                 9
              bDescriptorType        33
              bcdHID               1.11
              bCountryCode            0 Not supported
              bNumDescriptors         1
              bDescriptorType        34 Report
              wDescriptorLength      71
             Report Descriptors: 
               ** UNAVAILABLE **
          Endpoint Descriptor:
            bLength                 7
            bDescriptorType         5
            bEndpointAddress     0x81  EP 1 IN
            bmAttributes            3
              Transfer Type            Interrupt
              Synch Type               None
              Usage Type               Data
            wMaxPacketSize     0x0008  1x 8 bytes
            bInterval              10
    

    There’s not a great deal to be seen here. As it tells you right on Yubico’s site, the device presents as a keyboard and it “types” out its key when you press the button, adding another long and complex password to combine with the long and complex password that you’re already using.

    Keep in mind that this device is unable to protect you from keyloggers, some of which are hardware-based. It’s critically important that you are very, very careful about where you’re sticking your Yubikey. Even Yubico cannot protect us from ourselves.


    Tags: , , , ,
    Permalink: 20130604.yay.yubico.yubikey

    Thu, 30 May 2013

    Making ixquick your default search engine

    In this writer’s opinion, it is vitally important that we take reasonable measures now to help insure anonymity, lest we create a situation where privacy no longer exists, and the simple want of, becomes suspicious.

    Here’s how to configure your browser to automatically use a search engine that respects your privacy.

    Chrome:

    1. Click Settings.
    2. Click “Set pages” in the “On startup” section.
    3. Enter https://ixquick.com/eng/ in the “Add a new page” text field.
    4. Click OK.
    5. Click “Manage search engines…”
    6. At the bottom of the “Search Engines” dialog, click in the “Add a new search engine” field.
    7. Enter
      ixquick
      ixquick.com
      https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
    8. Click “Make Default”.
    9. Click “Done”.

    Firefox:

    1. Click the Tools Menu.
    2. Click Options.
    3. Click the General tab.
    4. In “When Firefox Starts” dropdown, select “Show my home page”.
    5. Enter https://ixquick.com/eng/ in the “Home Page” text field.
    6. Click one of the English options here.
    7. Check box for “Start using it right away.”
    8. Click “Add”.

    Opera:

    1. Click “Manage Search Engines
    2. Click “Add”
    3. Enter
      Name: ixquick
      Keyword: x
      Address: https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
    4. Check “Use as default search engine”
    5. Click “OK”

    Internet Explorer:

        _     ___  _ __        ___   _ _____ ___ 
       | |   / _ \| |\ \      / / | | |_   _|__ \
       | |  | | | | | \ \ /\ / /| | | | | |   / /
       | |__| |_| | |__\ V  V / | |_| | | |  |_| 
       |_____\___/|_____\_/\_/   \___/  |_|  (_) 
      
      
      (This is not a good strategy for privacy.)

    Congratulations!

    \o/

    You are now one step closer to not having every motion on the Internet recorded.

    This is a relatively small measure, though. You can improve your resistance to prying eyes (e.g., browser fingerprinting) by using the Torbrowser Bundle, or even better, Tails, and routing your web usage through Tor, i2p, or FreeNet.

    If you would like more on subjects like anonymyzing, privacy and security then drop me a line via email or Bitmessage me: BM-2D9tDkYEJSTnEkGDKf7xYA5rUj2ihETxVR


    Tags: , , , , , , , , , , , , , ,
    Permalink: 20130530.hey.you.get.offa.my.data

    Thu, 23 May 2013

    GNU Screen: Roll your own system monitor

    Working on remote servers, some tools are practically ubiquitous — while others are harder to come by. Even if you’ve the authority to install your preferred tools on every server you visit, it’s not always something you want to do. If you’ve hopped on to a friend’s server just to troubleshoot a problem, there is little reason to install tools that your friend is not in the habit of using. Some servers, for security reasons, are very tightly locked down to include only a core set of tools, to complicate the job of any prying intruders. Or perhaps it is a machine that you normally use through a graphical interface but on this occasion you need to work from the CLI.

    These are very compelling reasons to get comfortable, at the very least, with tools like Vim, mail, grep and sed. Eventually, you’re likely to encounter a situation where only the classic tools are available. If you aren’t competent with those tools, you’ll end up facing the obstacle of how to get files from the server to your local environment where you can work and, subsequently, how to get the files back when you’re done. In a secured environment, this may not be possible without violating protocols.

    Let’s take a look at how we can build a makeshift system monitor using some common tools. This particular configuration is for a server running PHP, MySQL and has the tools Htop and mytop installed. These can easily be replaced with top and a small script to SHOW FULL PROCESSLIST, if needed. The point here is illustrative, to provide a template to be modified according to each specific environment.

    (Note: I generally prefer tmux to Gnu Screen but screen is the tool more likely to be already installed, so we’ll use it for this example.)

    We’re going to make a set of windows, by a configuration file, to help us keep tabs on what is happening in this system. In so doing, we’ll be using the well-known tools less and watch. More specifically, less +F which tells less to “scroll forward”. Other words, less will continue to read the file making sure any new lines are added to the display. You can exit this mode with CTRL+c, search the file (/), quit(q) or get back into scroll-forward mode with another uppercase F.

    Using watch, we’ll include the “-d” flag which tells watch we want to highlight any changes (differences).

    We will create a configuration file for screen by typing:

    > vim monitor.screenrc

    In the file, paste the following:

    # Screen setup for system monitoring
    # screen -c monitor.screenrc
    hardstatus alwayslastline
    hardstatus string '%{= kG}[ %{G}%H %{g}][%= %{=kw}%?%-Lw%?%{r}(%{W}%n*%f%t%?(%u)%?%{r})%{w}%?%+Lw%?%?%= %{g}][%{B}%Y-%m-%d %{W}%c %{g}]'

    screen -t htop 0 htop
    screen -t mem 1 watch -d "free -t -m"
    screen -t mpstat 2 watch -d "mpstat -A"
    screen -t iostat 3 watch -d "iostat"
    screen -t w 4 watch -d "w"
    screen -t messages 5 less +F /var/log/messages
    screen -t warn 6 less +F /var/log/warn
    screen -t database 7 less +F /srv/www/log/db_error
    screen -t mytop 8 mytop
    screen -t php 9 less +F /srv/www/log/php_error

    (Note: -t sets the title, then the window number, followed by the command running in that window)

    Save the file (:wq) or, if you’d prefer, you can grab a copy by right-clicking and saving this file.

    Then we will execute screen using this configuration, as noted in the comment:

    > screen -c monitor.screenrc

    Then you can switch between windows using CTRL+a, n (next) or CTRL+a, p (previous).

    I use this technique on my own computers, running in a TTY different from the one used by X. If the graphical interface should get flaky, I can simply switch to that TTY (e.g., CTRL+ALT+F5) to see what things are going on — and take corrective actions, if needed.


    Tags: , , , , , , , , , ,
    Permalink: 20130523.gnu.screen.system.monitor