c0d3 :: j0rg3

A collection of tips, tricks and snips. A proud Blosxom weblog. All code. No cruft.

Fri, 17 Feb 2017

The making of a Docker: Part I - Bitmessage GUI with SSH X forwarding

Lately, I’ve been doing a lot of work from a laptop running Kali. Engaged in pursuit of a new job, I’m brushing up on some old tools and skills, exploring some bits that have changed.

My primary desktop rig is currently running Arch because I love the fine grain control and the aggressive releases. Over the years, I’ve Gentoo’d and Slacked, Crunchbanged, BSD’d, Solarised, et cet. And I’ve a fondness for all of them, especially the security-minded focus of OpenBSD. But, these days we’re usually on Arch or Kali. Initially, I went with Black Arch on the laptop but I felt the things and ways I was fixing things were too specific to my situation to be good material for posts.

Anyway, I wanted to get Bitmessage running, corresponding to another post I have in drafts. On Kali, it wasn’t going well so I put it on the Arch box and just ran it over the network. A reasonable solution if you’re in my house but also the sort of solution that will keep a hacker up at night.

If you’re lucky, there’s someone maintaining a package for the piece of software that you want to run. However, that’s often not the case.

If I correctly recall, to “fix” the problem with Bitmessage on Kali would’ve required the manual installation an older version of libraries that were already present. Those libraries should, in fact, be all ebony and ivory, living together in harmony. However, I just didn’t love the idea of that solution. I wanted to find an approach that would be useful on a broader scale.

Enter containerization/virtualization!

Wanting the lightest solution, I quickly went to Docker and realized something. I have not before built a Docker container for a GUI application. And Bitmessage’s CLI/daemon mode doesn’t provide the fluid UX that I wanted. Well, the easy way to get a GUI out of a Docker container is to forward DISPLAY as an evironment variable (i.e., docker run -e DISPLAY=$DISPLAY). Splendid!

Except that it doesn’t work on current Kali which is using QT4. There’s a when graphical apps are run as root and though it is fixed in QT5, we are using current Kali. And that means we are, by default, uid 0 and QT4.

I saw a bunch of workarounds that seemed to have spotty (at best) rates of success including seting QT’s graphics system to Native and giving Xorg over to root. They, mostly, seemed to be cargo cult solutions.

What made the most sense to my (generally questionable) mind was to use X forwarding. Since I had already been running Bitmessage over X forwarding from my Arch box, I knew it should work just the same.

To be completely truthful, the first pass I took at this was with Vagrant mostly because it’s SO easy. Bring up your Vagrant Box and then:
vagrant ssh -- -X
Viola!

Having proof of concept, I wanted a Docker container. The reason for this is practical. Vagrant, while completely awesome, has substantially more overhead than Docker by virtualizing the kernel. We don’t want a separate kernel running for each application. Therefore Docker is the better choice for this project.

Also, we want this whole thing to be seemless. We want to run the command bitmessage and it should fire up with minimal awkwardness and hopefully no extra steps. That is we do not want to run the Docker container then SSH into it and execute Bitmessage as individual steps. Even though that’s going to be how we begin.

The Bitmessage wiki accurately describes how to install the software so we’ll focus on the SSH setup. Though when we build the Dockerfile we will need to add SSH to the list from the wiki.

We’re going to want the container to start so that the SSH daemon is ready. Until then we can’t SSH (with X forwarding) into the container. Then we’ll want to use SSH to kick off the Bitmessage application, drawing the graphical interface using our host system’s X11.

We’re going to take advantage of Docker’s -v --volume option which allows us to specify a directory on our host system to be mounted inside our container. Using this feature, we’ll generate our SSH keys on the host and make them automatically available inside the container. We’ll tuck the keys inside the directory that Bitmessage uses for storing its configuration and data. That way Bitmessage’s configuration and stored messages can be persistent between runs — and all of your pieces are kept in a single place.

When we generate the container /etc/ssh/sshd_config is configured to allow root login without password only (i.e., using keys). So here’s how we’ll get this done:
mkdir -p ~/.config/PyBitmessage/keys #Ensure that our data directories exist
cd ~/.config/PyBitmessage/keys
ssh-keygen -b 4096 -P "" -C $"$(whoami)@$(hostname)-$(date -I)" -f docker-bitmessage-keys #Generate our SSH keys
ln -fs docker-bitmessage-keys.pub authorized_keys #for container to see pubkey

Build our container (sources available at Github and Docker) and we’ll make the script to handle Bitmessage to our preferences. #!/bin/bash
# filename: bitmessage
set -euxo pipefail

# open Docker container:
# port 8444 available, sharing local directories for SSH and Bitmessage data
# detatched, interactive, pseudo-tty (-dit)
# record container ID in $DID (Docker ID)
DID=$(docker run -p 8444:8444 -v ~/.config/PyBitmessage/:/root/.config/PyBitmessage -v ~/.config/PyBitmessage/keys/:/root/.ssh/ -dit j0rg3/bitmessage-gui bash)

# find IP address of new container, record in $DIP (Docker IP)
DIP=$(docker inspect $DID | grep IPAddress | cut -d '"' -f 4)

# pause for one second to allow container's SSHD to come online
sleep 1

# SSH into container and execute Bitmessage
ssh -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null -oIdentityFile=~/.config/PyBitmessage/keys/docker-bitmessage-keys -X $DIP ./PyBitmessage/src/bitmessagemain.py

# close container if Bitmessage is closed
docker kill $DID

Okay, let’s make it executable: chmod +x bitmessage

Put a link to it where it can be picked up system-wide: ln -fs ~/docker-bitmessage/bitmessage /usr/local/bin/bitmessage

There we have it! We now have a functional Bitmessage inside a Docker container. \o/

In a future post we’ll look at using eCryptfs to further protect our Bitmessage data stores.

  Project files: Github and Docker


Tags: , , , , , , , , , , ,
Permalink: 20170217.making.a.docker.bitmessage

Sun, 13 Jul 2014

Simple Protection with iptables, ipset and Blacklists

Seems I’ve always just a few more things going on than I can comfortably handle. One of those is an innocent little server holding the beginnings of a new project.

If you expose a server to the Internet, very quickly your ports are getting scanned and tested. If you’ve an SSH server, there are going to be attempts to login as ‘root’ which is why it is ubiquitously advised that you disable root login. Also why many advise against allowing passwords at all.

We could talk for days about improvements; it’s usually not difficult to introduce some form of two-factor authentication (2FA) for sensitive points of entry such as SSH. You can install monitoring software like Logwatch which can summarize important points from your logs, such as: who has logged via SSH, how many times root was used, etc.

DenyHosts and Fail2ban are very great ways to secure things, according to your needs.

DenyHosts works primarily with SSH and asks very little from you in way of configuration, especially if you’re using a package manager to install a version that is configured for the distribution on which you’re working. If you’re installing from source you may need to find where are your SSH logs (e.g., /var/log/secure, /var/log/auth.log). It’s extremely easy to set up DenyHosts to synchronize so that you’re automatically blocking widely-known offenders whether or not they’re after your server.

In contrast, Fail2ban is going to take more work to get set up. However, it is extremely configurable and works with any log file you point it toward which means that it can watch anything (e.g., FTP, web traffic, mail traffic). You define your own jails which means you can ban problematic IP addresses according to preference. Ban bad HTTP attempts from HTTP only or stick their noses in the virtual corner and don’t accept any traffic from them until they’ve served their time-out by completely disallowing their traffic. You can even use Fail2ban to scan its own logs, so repeating offenders can be locked out for longer.

Today we’re going to assume that you’ve a new server that shouldn’t be seeing any traffic except from you and any others involved in the project. In that case, you probably want to block traffic pretty aggressively. If you’ve physical access to the server (or the ability to work with staff at the datacenter) then it’s better to err in the direction of accidentally blocking good guys than trying to be overly fault-tolerant.

The server we’re working on today is a Debian Wheezy system. It has become a common misconception that Ubuntu and Debian are, intents and purposes, interchangeable. They’re similar in many respects and Ubuntu is great preparation for using Debian but they are not the same. The differences, I think, won’t matter for this exercise but I am unsure because this was written using Wheezy.

Several minutes after bringing my new server online, I started seeing noise in the logs. I was still getting set up and really didn’t want to stop and take protective measures but there’s no point in securing a server after its been compromised. The default Fail2ban configuration was too forgiving for my use. It was scanning for 10 minutes and banning for 10 minutes. Since only a few people should be accessing this server, there’s no reason for anyone to be trying a different password every 15 minutes (for hours).

I found a ‘close-enough’ script and modified it. Here, we’ll deal with a simplified version.

First, lets create a name for these ne’er-do-wells in iptables:
iptables -N bad_traffic

For this one, we’ll use Perl. We’ll look at our Apache log files to find people sniffing ‘round and we’ll block their traffic. Specifically, we’re going to check Apache’s ‘error.log’ for the phrases ‘File does not exist’ and ‘client denied by server configuration’ and block people causing those errors. This would be excessive for servers intended to serve the general populace. For a personal project, it works just fine as a ‘DO NOT DISTURB’ sign.


#!/usr/bin/env perl
use strict;
use POSIX qw(strftime);

my $log = ($ARGV[0] ? $ARGV[0] : "/var/log/apache2/error.log");
my $chain = ($ARGV[1] ? $ARGV[1] : "bad_traffic");

my @bad = `grep -iE 'File does not exist|client denied by server configuration' $log |cut -f8 -d" " | sed 's/]//' | sort -u`;
my @ablk = `/sbin/iptables -S $chain|grep DROP|awk '{print $4}'|cut -d"/" -f1`;

foreach my $ip (@bad) {
if (!grep $_ eq $ip, @ablk) {
chomp $ip;
`/sbin/iptables -A $chain -s $ip -j DROP`;
print strftime("%b %d %T",localtime(time))." badht: blocked bad HTTP traffic from: $ip\n";
}
}

That gives us some great, utterly unforgiving, blockage. Looking at the IP addresses attempting to pry, I noticed that most of them were on at least one of the popular block-lists.

So let’s make use of some of those block-lists! I found a program intended to apply those lists locally but, of course, it didn’t work for me. Here’s a similar program; this one will use ipset for managing the block-list though only minor changes would be needed to use iptables as above:

#!/bin/bash
IP_TMP=ip.tmp
IP_BLACKLIST_TMP=ip-blacklist.tmp

IP_BLACKLIST=ip-blacklist.conf

WIZ_LISTS="chinese nigerian russian lacnic exploited-servers"

BLACKLISTS=(
"http://danger.rulez.sk/projects/bruteforceblocker/blist.php" # BruteForceBlocker IP List
"http://rules.emergingthreats.net/blockrules/compromised-ips.txt" # Emerging Threats - Compromised IPs
"http://www.spamhaus.org/drop/drop.txt" # Spamhaus Don't Route Or Peer List (DROP)
"http://www.spamhaus.org/drop/edrop.txt" # Spamhaus Don't Route Or Peer List (DROP) Extended
"http://cinsscore.com/list/ci-badguys.txt" # C.I. Army Malicious IP List
"http://www.openbl.org/lists/base.txt" # OpenBL.org 90 day List
"http://www.autoshun.org/files/shunlist.csv" # Autoshun Shun List
"http://lists.blocklist.de/lists/all.txt" # blocklist.de attackers
)

for address in "${BLACKLISTS[@]}"
do
echo -e "\nFetching $address\n"
curl "$address" >> $IP_TMP
done

for list in $WIZ_LISTS
do
wget "http://www.wizcrafts.net/$list-iptables-blocklist.html" -O - >> $IP_TMP
done

wget 'http://wget-mirrors.uceprotect.net/rbldnsd-all/dnsbl-3.uceprotect.net.gz' -O - | gunzip | tee -a $IP_TMP

grep -o '^[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}[/][0-9]\{1,3\}' $IP_TMP | tee -a $IP_BLACKLIST_TMP
grep -o '^[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}[^/]' $IP_TMP | tee -a $IP_BLACKLIST_TMP

sed -i 's/\t//g' $IP_BLACKLIST_TMP
sort -u $IP_BLACKLIST_TMP | tee $IP_BLACKLIST

rm $IP_TMP
rm $IP_BLACKLIST_TMP

wc -l $IP_BLACKLIST

if hash ipset 2>/dev/null
then
ipset flush bloxlist
while IFS= read -r ip
do
ipset add bloxlist $ip
done < $IP_BLACKLIST
else
echo -e '\nipset not found\n'
echo -e "\nYour bloxlist file is: $IP_BLACKLIST\n"
fi


Download here:
    bad_traffic.pl
    bloxlist.sh


Tags: , , , , , , , , , ,
Permalink: 20140713.simple.protection.with.iptables.ipset.and.blacklilsts

Tue, 18 Mar 2014

Random datums with Random.org

I was reading about the vulnerability in the ‘random’ number generator in iOS 7 (http://threatpost.com/weak-random-number-generator-threatens-ios-7-kernel-exploit-mitigations/104757) and thought I would share a method that I’ve used. Though, I certainly was not on any version of iOS but, at least, I can help in GNU/Linux and BSDs.

What if we want to get some random numbers or strings? We need a salt or something and, in the interest of best practices, we’re trying to restrain the trust given to any single participant in the chain. That is, we do not want to generate the random data from the server that we are on. Let’s make it somewhere else!

YEAH! I know, right? Where to get a random data can be a headache-inducing challenge. Alas! The noble people at Random.org are using atmospheric noise to provide randomness for us regular folk!

Let’s head over and ask for some randomness:
https://www.random.org/strings/?num=1&len=16&digits=on&loweralpha=on&unique=on&format=html&rnd=new

Great! Still feels a little plain. What if big brother saw the string coming over and knew what I was doing? I mean, aside from the fact that I could easily wrap the string with other data of my choosing.

Random.org is really generous with the random data, so why don’t we take advantage of that? Instead of asking for a single string, let’s ask for several. Nobunny will know which one I picked, except for me!

We’ll do that by increasing the 'num' part of the request that we’re sending:
https://www.random.org/strings/?num=25&len=16&digits=on&loweralpha=on&unique=on&format=html&rnd=new

They were also thinking of CLI geeks like us with the 'format' variable. We set that to 'plain' and all the fancy formatting for human eyes is dropped and we get a simple list that we don’t need to use any clever tricks to parse!
curl -s 'https://www.random.org/strings/?num=25&len=16&digits=on&loweralpha=on&unique=on&format=plain&rnd=new'

Now we’ve got 25 strings at the CLI. We can pick one to copy and paste. But what if we don’t want to do the picking? Well, we can use the local system to do that. We’ll have it pick a number between 1 and 25. It’s zero-indexed, so we’re going to increment by 1 so that our number is really between 1 and 25.
echo $(( (RANDOM % 25)+1 ))

Next, we’ll send our list to head with our random number. Head is going to give us the first X lines of what we send to it. So if our random number is 17, then it will give us the first 17 lines from Random.org
curl -s 'https://www.random.org/strings/?num=25&len=16&digits=on&loweralpha=on&unique=on&format=plain&rnd=new' | head -$(( (RANDOM % 25)+1 ))

After that, we’ll use the friend of head: tail. We’ll tell tail that we want only the last record of the list, of psuedo-random length, of strings that are random.
curl -s 'https://www.random.org/strings/?num=25&len=16&digits=on&loweralpha=on&unique=on&format=plain&rnd=new' | head -$(( (RANDOM % 25)+1 )) | tail -1

And we can walk away feeling pretty good about having gotten some properly random data for our needs!


Tags: ,
Permalink: 20140318.random.data

Sat, 25 Jan 2014

Network-aware Synergy client

My primary machines are *nix or BSD variants, though I certainly have some Windows-based rigs also. Today we’re going to share some love with Windows 7 and PowerShell.

One of my favorite utilities is Synergy. If you’re not already familiar it allows to you seamlessly move from the desktop of one computer to another with the same keyboard and mouse. It even supports the clipboard so you might copy text from a GNU/Linux box and paste it in a Windows’ window. Possibly, they have finished adding drag and drop to the newer versions. I am not sure because I run a relatively old version that is supported by all of the machines that I use regularly.

What’s the problem, then? The problem was that I was starting my Synergy client by hand. Even more disturbing, I was manually typing the IP address at work and at home, twice or more per weekday. This behavior became automated by my brain and continued for months unnoticed. But this is no kind of life for a geek such as myself, what with all this superfluous clicking and tapping!

Today, we set things right!

In my situation, the networks that I use happen to assign IP addresses from different subnets. If you’ve not the convenience of that situation then you might need to add something to the script. Parsing an ipconfig/ifconfig command, you could possibly use something like the Default Gateway or the Connection-specific DNS Suffix. Alternatively, you could check for the presence of some network share, a file on server or anything that would allow you to uniquely identify the surroundings.

As I imagined it, I wanted the script to accomplish the following things

  • see if Synergy is running (possibly from the last location), if so ask if we need to kill it and restart so we can identify a new server
  • attempt to locate where we are and connect to the correct Synergy server
  • if the location is not identified, ask whether to start the Synergy client

This is how I accomplished that task:

# [void] simply supresses the noise made loading 'System.Reflection.Assembly'
[void] [System.Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

# Define Synergy server IP addresses
$synergyServerWork = "192.168.111.11"
$synergyServerHome = "192.168.222.22"

# Define partial IP addresses that will indicate which server to use
$synergyWorkSubnets = "192.168.111", "192.168.115"
$synergyHomeSubnets = "192.168.222", "192.168.225"

# Path to Synergy Client (synergyc)
$synergyClientProgram = "C:\Program Files\Synergy\synergyc.exe"

# Path to Syngery launcher, for when we cannot identify the network
$synergyLauncherProgram = "C:\Program Files\Synergy\launcher.exe"

# Remove path and file extension to give us the process name
$processName = $synergyClientProgram.Substring( ($synergyClientProgram.lastindexof("\") + 1), ($synergyClientProgram.length - ($synergyClientProgram.lastindexof("\") + 5) ))

# Grab current IP address
$currentIPaddress = ((ipconfig | findstr [0-9].\.)[0]).Split()[-1]

# Find the subnet of current IP address
$location = $currentIPaddress.Substring(0,$currentIPaddress.lastindexof("."))


function BalloonTip ($message)
{
# Pop-up message from System Tray
$objNotifyIcon = New-Object System.Windows.Forms.NotifyIcon
$objNotifyIcon.Icon = [System.Drawing.Icon]::ExtractAssociatedIcon($synergyClientProgram)
$objNotifyIcon.BalloonTipText = $message
$objNotifyIcon.Visible = $True
$objNotifyIcon.ShowBalloonTip(15000)
}


#main

# If Synergy client is already running, do we need to restart it?
$running = Get-Process $processName -ErrorAction SilentlyContinue
if ($running) {
$answer = [System.Windows.Forms.MessageBox]::Show("Synergy is running.`nClose and start again?", "OHNOES", 4)
if ($answer -eq "YES") {
Stop-Process -name $processName
}
Else {
exit
}
}

# Do we recognize the current network?
if ($synergyWorkSubnets -contains $location) {
BalloonTip "IP: $($currentIPaddress)`nServer: $($synergyServerWork)`nConnecting to Synergy server at work."
& $synergyClientProgram $synergyServerWork
exit
}
ElseIf ($synergyHomeSubnets -contains $location) {
BalloonTip "IP: $($currentIPaddress)`nServer: $($synergyServerHome)`nConnecting to Synergy server at home."
& $synergyClientProgram $synergyServerHome
exit
}
Else {
$answer = [System.Windows.Forms.MessageBox]::Show("Network not recognized by IP address: {0}`n`nLaunch Synergy?" -f $unrecognized, "OHNOES", 4)
if ($answer -eq "YES") {
& $synergyLauncherProgram
}
}

Then I saved the script in "C:\Program Files\SynergyStart\", created a shortcut and used the Change Icon button to make the same as Synergy’s and made the Target:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -WindowStyle Hidden & 'C:\Program Files\SynergyStart\synergy.ps1'

Lastly, I copied the shortcut into the directory of things that run when the system starts up:
%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

Now, Synergy connects to the needed server at home and work. If it can’t figure out where it is, it asks if it should run it at all.

As they say, a millisecond saved is a millisecond earned.

This post was very nearly published without a Linux equivalent. Nearly.

Same trick for bash/zsh: #!/bin/zsh

# Define Synergy server IP addresses
synergyServerWork="192.168.111.11"
synergyServerHome="192.168.222.22"

# Define partial IP addresses that will indicate which server to use
synergyWorkSubnets=("192.168.111" "192.168.115")
synergyHomeSubnets=("192.168.222" "192.168.225")

# Path to Synergy Client (synergyc)
synergyClientProgram="/usr/bin/synergyc"

# Path to QuickSyngery, for when we cannot identify the network
synergyLauncherProgram="/usr/bin/quicksynergy"

# Remove path and file extension to give us the process name
processName=`basename $synergyClientProgram`

# Grab current IP address, assumes '192' is in use. (e.g., 192.168.1.1)
currentIPaddress=`ip addr show | grep 192 | awk "{print $2}" | sed 's/inet //;s/\/.*//;s/ //g'`

# Find the subnet of current IP address
location=`echo $currentIPaddress | cut -d '.' -f 1,2,3`

for i in "${synergyWorkSubnets[@]}"
do
if [ "${i}" = "${location}" ]
then
break
fi
done

#main

# If Synergy client is already running, do we need to restart it?
running=`ps ax | grep -v grep | grep $processName`
if [ $running ]
then
if `zenity --question --ok-label="Yes" --cancel-label="No" --text="Synergy is running.\nClose and start again?"`
then
pkill $processName
else
exit
fi
fi

# Do we recognize the current network?
for i in "${synergyWorkSubnets[@]}"
do
if [ "${i}" = "${location}" ]
then
notify-send "IP:$currentIPaddress Server:$synergyServerWork [WORK]"
$synergyClientProgram $synergyServerWork
exit
fi
done

for i in "${synergyHomeSubnets[@]}"
do
if [ "${i}" = "${location}" ]
then
notify-send "IP:$currentIPaddress Server:$synergyServerWork [HOME]"
$synergyClientProgram $synergyServerHome
exit
fi
done

if `zenity --question --ok-label="Yes" --cancel-label="No" --text="Network not recognized by IP address: $currentIPaddress\nLaunch Synergy?"`
then
$synergyLauncherProgram
fi

To get it to run automatically, you might choose to call the script from /etc/init.d/rc.local.

Download here:
  PowerShell:
    synergy.ps1
  GNU/Linux:
    synergy.sh


Tags: , ,
Permalink: 20140125.network_aware_synergy_client

Tue, 04 Jun 2013

Painless protection with Yubico’s Yubikey

Recently, I ordered a Yubikey and, in the comments section of the order, I promised to write about the product. At the time, I assumed that there was going to be something about which to write: (at least a few) steps of setting up and configuration or a registration process. They’ve made the task of writing about it difficult, by making the process of using it so easy.

Plug it in. The light turns solid green and you push the button when you need to enter the key. That’s the whole thing!

Physically, the device has a hole for a keychain or it can slip easily into your wallet. It draws power from the USB port on the computer, so there’s none stored in the device, meaning it should be completely unfazed if you accidentally get it wet.

Let’s take a look at the device.

> lsusb | grep Yubico

Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey

We see that it is on Bus 5, Device 4. How about a closer look?

> lsusb -v -s5:4

Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey
Couldn't open device, some information will be missing
Device Descriptor:
  bLength                18
  bDescriptorType         1
  bcdUSB               2.00
  bDeviceClass            0 (Defined at Interface level)
  bDeviceSubClass         0 
  bDeviceProtocol         0 
  bMaxPacketSize0         8
  idVendor           0x1050 Yubico.com
  idProduct          0x0010 Yubikey
  bcdDevice            2.41
  iManufacturer           1 
  iProduct                2 
  iSerial                 0 
  bNumConfigurations      1
  Configuration Descriptor:
    bLength                 9
    bDescriptorType         2
    wTotalLength           34
    bNumInterfaces          1
    bConfigurationValue     1
    iConfiguration          0 
    bmAttributes         0x80
      (Bus Powered)
    MaxPower               30mA
    Interface Descriptor:
      bLength                 9
      bDescriptorType         4
      bInterfaceNumber        0
      bAlternateSetting       0
      bNumEndpoints           1
      bInterfaceClass         3 Human Interface Device
      bInterfaceSubClass      1 Boot Interface Subclass
      bInterfaceProtocol      1 Keyboard
      iInterface              0 
        HID Device Descriptor:
          bLength                 9
          bDescriptorType        33
          bcdHID               1.11
          bCountryCode            0 Not supported
          bNumDescriptors         1
          bDescriptorType        34 Report
          wDescriptorLength      71
         Report Descriptors: 
           ** UNAVAILABLE **
      Endpoint Descriptor:
        bLength                 7
        bDescriptorType         5
        bEndpointAddress     0x81  EP 1 IN
        bmAttributes            3
          Transfer Type            Interrupt
          Synch Type               None
          Usage Type               Data
        wMaxPacketSize     0x0008  1x 8 bytes
        bInterval              10

There’s not a great deal to be seen here. As it tells you right on Yubico’s site, the device presents as a keyboard and it “types” out its key when you press the button, adding another long and complex password to combine with the long and complex password that you’re already using.

Keep in mind that this device is unable to protect you from keyloggers, some of which are hardware-based. It’s critically important that you are very, very careful about where you’re sticking your Yubikey. Even Yubico cannot protect us from ourselves.


Tags: , , , ,
Permalink: 20130604.yay.yubico.yubikey

Thu, 30 May 2013

Making ixquick your default search engine

In this writer’s opinion, it is vitally important that we take reasonable measures now to help insure anonymity, lest we create a situation where privacy no longer exists, and the simple want of, becomes suspicious.

Here’s how to configure your browser to automatically use a search engine that respects your privacy.

Chrome:

  1. Click Settings.
  2. Click “Set pages” in the “On startup” section.
  3. Enter https://ixquick.com/eng/ in the “Add a new page” text field.
  4. Click OK.
  5. Click “Manage search engines…”
  6. At the bottom of the “Search Engines” dialog, click in the “Add a new search engine” field.
  7. Enter
    ixquick
    ixquick.com
    https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
  8. Click “Make Default”.
  9. Click “Done”.

Firefox:

  1. Click the Tools Menu.
  2. Click Options.
  3. Click the General tab.
  4. In “When Firefox Starts” dropdown, select “Show my home page”.
  5. Enter https://ixquick.com/eng/ in the “Home Page” text field.
  6. Click one of the English options here.
  7. Check box for “Start using it right away.”
  8. Click “Add”.

Opera:

  1. Click “Manage Search Engines
  2. Click “Add”
  3. Enter
    Name: ixquick
    Keyword: x
    Address: https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
  4. Check “Use as default search engine”
  5. Click “OK”

Internet Explorer:

      _     ___  _ __        ___   _ _____ ___ 
     | |   / _ \| |\ \      / / | | |_   _|__ \
     | |  | | | | | \ \ /\ / /| | | | | |   / /
     | |__| |_| | |__\ V  V / | |_| | | |  |_| 
     |_____\___/|_____\_/\_/   \___/  |_|  (_) 
    
    
    (This is not a good strategy for privacy.)

Congratulations!

\o/

You are now one step closer to not having every motion on the Internet recorded.

This is a relatively small measure, though. You can improve your resistance to prying eyes (e.g., browser fingerprinting) by using the Torbrowser Bundle, or even better, Tails, and routing your web usage through Tor, i2p, or FreeNet.

If you would like more on subjects like anonymyzing, privacy and security then drop me a line via email or Bitmessage me: BM-2D9tDkYEJSTnEkGDKf7xYA5rUj2ihETxVR


Tags: , , , , , , , , , , , , , ,
Permalink: 20130530.hey.you.get.offa.my.data